
07 570684 Ch04.qxd 3/31/04 2:50 PM Page 51

Chapter 4: C What I/O 51
� If you’re writing a C program that requires input, you must create a place

to store it. For text input, that place is a string variable, which you create
by using the char keyword.

� Variables are officially introduced in Chapter 8 in this book. For now, con
sider the string variable that scanf() uses as merely a storage chamber
for text you type.

� The formatting codes used by scanf() are identical to those used by
printf(). In real life, you use them mostly with printf() because
there are better ways to read the keyboard than to use scanf(). Refer
to Table 24-2 in Chapter 24 for a list of the formatting percent-sign place
holder codes.

� Forgetting to stick the & in front of scanf()’s variable is a common mis
take. Not doing so leads to some wonderful null pointer assignment errors
that you may relish in the years to come. As a weird quirk, however, the
ampersand is optional when you’re dealing with string variables. Go
figure.

The miracle of scanf()

Consider the following pointless program, COLOR.C, which uses two string
variables, name and color. It asks for your name and then your favorite color.
The final printf() statement then displays what you enter.

#include <stdio.h>

int main()
{

char name[20];
char color[20];

printf(“What is your name?”);
scanf(“%s”,name);
printf(“What is your favorite color?”);
scanf(“%s”,color);
printf(“%s’s favorite color is %s\n”,name,color);
return(0);

}

Enter this source code into your editor. Save this file to disk as COLOR.C.
Compile.

If you get any errors, double-check your source code and reedit the file. A
common mistake: forgetting that there are two commas in the final printf()
statement.

